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Abstract  

By representing a bond-valence network to which the 
valence-sum rule applies as an oriented bipartite 
multigraph, it is possible to use matrix methods to 
obtain an exact solution without making successive 
approximations. For this solution to be unique 
requires some equivalent of the Kirchhoff voltage 
law be applied to the system; the methods of Mackay 
& Finney [J. Appl. Cryst. (1973), 6, 284-289] 
and Brown [Acta Cryst. (1977), B33, 1305- 
1310] involve two distinct special cases of such a 
rule. In general, the bond valences s can be calcu- 
lated from the formal charges f as s =  
[ I -  C(CtU- ~C)- ~C'U- t]BT: ~f, where Br is the 
incidence matrix of a spanning tree of the graph, 
matrix C represents the corresponding fundamental 
cycles, and Ui is some function of the weight of 
edge i. 

Introduction 

Any successful attempt to make an a priori predic- 
tion of inorganic crystal structures will necessarily 
include predictions of individual bond lengths. 
Brown (1977) has suggested that these bond lengths 
may be derived, in turn, from estimates of the bond 
valence, which obey the 'valence-sum rule', or elec- 
troneutrality principle, a set of concepts originated 
by Pauling (1929). Empirical relationships between 
bond length and bond valence are now well estab- 
lished (Brown & Shannon, 1973; Brown, 1981), and 
methods such as that of Meier & Villiger (1969) may 
predict the structure once the ideal bond lengths are 
known. The problems remaining are to predict the 
connectivity of the structure, and to estimate the 
individual bond valences from the connectivity. 

An advance on this last-mentioned problem was 
the realization by Mackay & Finney (1973) that it 
was in some ways analogous to an electrical network 
problem to which Kirchhoff's laws apply; in particu- 
lar the valence-sum rule is equivalent to Kirchhoff's 
current law. 

However, the matrix method they introduced 
appears to become unwieldy in all but simple cases. 
Brown (1977) increased the scope of the method by 
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introducing an 'equal-valence rule', not obviously 
linked to Kirchhoff's laws, which allowed him to 
solve the network problem for a number of fairly 
complex structures. However, Brown's method is 
again an iterative one, for which computing time 
increases rapidly as the network increases in size. 

Since the chief difficulty with both approaches 
seemed to be the exact form of restriction to play the 
role of the voltage law in this system, it seemed 
worthwhile to re-examine the whole problem, using 
simple graph theory. 

Method 

The analysis follows the terminology and methods in 
Bollobfis (1979) in dealing with electrical networks 
by matrix methods. The symbols n and m are used 
for the size and order of the graph, respectively. For 
clarity, we first consider the case where there are no 
atoms which form bonds with two or more other 
atoms, which are themselves symmetry-related 
images of each other. This restriction is very unlikely 
in practice, but would be true, for example, for a 
structure in space group P1, provided the axis 
lengths are sufficiently large. It is always possible, 
however, to ignore the inherent symmetry to achieve 
this situation. We can then take the contents of the 
unit cell as the vertices of the graph, and the bonds, 
including bonds to vertex images in neighbouring 
unit cells, as the edges of the graph. 

If the structure consists of alternating cations 
(Lewis acids) and anions (Lewis bases), the graph 
formed is 'bipartite', and if each edge is defined as 
beginning at the base and ending at the acid, it is 
also 'oriented'. 

The electrical network problem can be expressed 
in matrix form as the current law (1), the voltage law 
(2), and Ohm's law (3). 

Bw = 0 (1) 

C ' p : 0  (2) 

p = Rw + g. (3) 

The vectors w, p and g are the current, voltage and 
voltage generator, and R is a diagonal matrix of the 
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resistances. The graph-theoretical concepts intro- 
duced are the incidence matrix B, and C, a matrix of 
the fundamental cycle vectors. Using f for the atomic 
valences and s for the bond valences, the valence- 
sum rule can be written: 

B s  = f. (4)  

This is superficially similar to (1). However, unlike 
(1), for which a change in the direction of an edge 
merely changes the sign of one component of w, (4) 
holds for one specific orientation of the graph only. 

Equation (4) alone does not produce a unique 
solution to the network, because, given one solution, 
there exist other solutions related to it by the 
alternate addition and subtraction of a constant 
around any circuit of the graph. We can prevent this 
effect by applying a rule that there must be no net 
bond-valence alternation of this sort around any 
cycle of the graph, and, in fact, we need only apply it 
to the fundamental cycles. In that case, we have 

C's  = 0.  (5)  

This is obviously similar to (2). However, equa- 
tions (4) and (5) involve the same vector s, while (1) 
and (2) involve w and p, requiring a third equation 
(3) to link the two. 

Given this formulation, we may follow Bollobfis in 
splitting the graph into a spanning tree T and chords 
N, constructing Br, Bu, Cr, sr  and SN. However, 
Bollobfis introduces an additional vertex into the 
graph, which is subsequently ignored in order to 
produce a square matrix Br. This is unnecessary, as 
it is possible to construct B£ l, the left inverse of Br, 
by other means. The dimensions of Br and B£ I are 
(n, n -  1) and ( n -  1, n), respectively, as the spanning 
tree has n vertices and n - 1  edges. Otherwise a 
parallel derivation to that in Bollobfis may be fol- 
lowed, using the relation Cr  = - B ~  IB u t o  give 

s = [Ira -- C(C/C) - IC/]Bf if (6) 

where I m is the mth-order identity matrix, and 'B~ ~' 
is a matrix of dimension (m, n), being the concat- 
enation of B r  I with the (m - n + 1, n) null matrix, 
i.e. 

U 
In other words we have an answer in the form 

s = M I  (6a)  

where M is derived from properties of the graph. 
This is comparable to the electrical network 

solution 

w = - C ( C / R C ) -  IC/g. (7)  

The information regarding the cycles in the graph 
is included in the matrix C of dimensions (m, m - n  

Table 1. Matrices for  K z'3 

(a) M '  ( x 6), (b) M "  for the KVO3 structure ( x 65), (c) Br, (d) (Br ~)' ( x 2), 
(e) C. 

Edge 

Atom a b c d e f a b c d e f 
9 

, , , , ,  ,0,0 0,0,0 
- ,  - ,  - ,  , , I ,0 ,0 

3 - 3  0 0 - 3  0 -25  0 0 -40  0 0 
4 0 - 3  0 0 - 3  - 1 9  - 6  0 - 4 6  6 
5 0 0 - 3  0 0 - - 6  - 19 0 6 - 4 6  

(a) (b) 

l I 0 0 
0 0 I 1 
0 0 - I  0 

- I  0 0 - l  
0 - I  0 0 

(c) 

1 1 I I 
- 1  1 I l 
- 1  1 - I  - I  
- 1  1 1 - I  

1 - I  I 1 

(d) 

Edge 
Cycle [ b e  d e  a f ]  
a [ -1  0 - l  I I 
f I - I  0 -1  0 I 

(e) 

+ 1). A convenience in this method is that C may be 
constructed by matrix operations without explicit 
searching, for 

C -- [CTICu] 

= [--  B ~  ~BNIlm-,,+ l]. 

An example of C is given in Table 1. 
Equation (6) involves two matrix inversions. The 

matrix C'C is symmetric and standard methods can 
be used. The matrix Br, however, is not square, and 
a special method for its inversion is outlined in the 
Appendix. The overall method has been implemented 
as a Basic language computer program. 

As an illustration, the method can be applied to a 
complete bipartite graph of order 5, that designated 
K 2"3. This graph has two vertices in one class and 
three in the other, and is shown in Fig. 1. It is also 
the graph used by Mackay & Finney for their 
example of BaTiO3. Table 1 shows the corresponding 
M matrix. It is not in its original form, but has been 
made to show the symmetry of the problem by the 
addition of a constant to the elements in each row. 
This alteration is valid, since the elements of f must 
sum to zero by definition. If we now allow for the 
case where an atom may be bonded to two or more 
equivalent atoms, the complexity of the graph is 
reduced by associating a weight with each edge of a 
collapsed form, which is a directed multigraph. In 
this way we reduce the order of the graph to corre- 
spond to the asymmetric unit or the formula unit of 
the crystal, whichever is larger. Multigraphs based 
on K 2"3 represent the structures of most M2X3 com- 
pounds, the various alkali-metal nitrates and halates, 
the perovskite, ilmenite, calcite and aragonite struc- 
ture types, but not the pyroxenes, and not the major- 
ity of the alkali-metal metapnictates. However, 
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potassium metavanadate (Evans, 1960), is one useful 
exception to which K 2'3 does apply. 

In the case of a multigraph, each edge has an 
associated weight wi. Although it is formally correct 
to build these weights into B and C, again for clarity 
we use the alternative of creating a diagonal matrix 
W, and treating s as the total bond valence for that 
edge. Then the individual bond valences are given by 
W-Is ,  and (4) remains unaltered. 

However, if we examine the voltage law, we find 
not one, but two, possibilities have been suggested. 
Although presented without a physical explanation, 
Mackay & Finney's matrix elements correspond to 
(5), which now requires no alternation of bond 
valences around a cycle of the multigraph, which 
lumps equivalent bonds together. On the other hand, 
Brown's equal-valence rule applies the same criterion 
to a cycle of individual bonds, and therefore takes 
the matrix form 

CaW-~s = 0. (8) 

The same manipulations as before now give 

s = [Ira - C ( C a W - I C ) - l C t W - ' ] B r  ' f  (9)  

s = M ' f .  ( 9 a )  

Table 1 gives the resulting matrix for the KVO3 
structure, which is one of the few based on this graph 
for which the bond valences cannot be allocated by 
inspection, as they can for BaTiO3, for example. 
KVO3 gives a good opportunity to compare the two 
approaches, since it must involve a very large range 
of bond valences. The two very different answers 
given by (6) and (9) are shown in Table 2. 

D i s c u s s i o n  

The results derived above have several interesting 
features. Firstly the matrix M or M' contains only 
information about the network, and therefore a par- 
ticular network need be solved only once, even 

a 3 

1 

2 

Fig. 1. The graph K 2"3 showing the numbering used in the tables. 
The spanning tree is shown as heavy lines, and the light lines are 
the chords. 

Table 2. Calculated and observed bond valences for 
KVO3 

v-o(1) 7-0(2) 
Edge (a) (b) 
Calculated 

by equation 
(6) 5/6 5/3 
(9) 29/26 18/13 

Observed 0-95 1.47 

V--O(3) K--O(I) K--O(2) K---O(3) 
to) (d) (e) (/) 

5/3 I/6 1/12 1/12 
18/13 - 3/26 2/13 2/13 

1"52 0"15 0-16 0-17 
0-I 1 0-05 

0-06( × 2) 0-02( x 2) 

Average 0. I 0 0.07 

though there may be several isostructural com- 
pounds with distinct atomic valences, or distinct 
structures reducible to the same graph, as with the 
zinc blende and wurtzite, and calcite and aragonite 
pairs. Also the matrix elements are necessarily 
rational, and therefore rational values of the bond 
valences are predicted, provided integer values of the 
atomic valences are used. 

The method improves on earlier approaches in not 
being iterative, and in dealing with structure types 
independent of chemical formulae. It also specifies 
the minimum m - n  cycles required to define a solu- 
tion, an aspect not considered by Mackay & Finney. 

The question remains as to whether equation (6) 
or equation (9) is the better criterion to predict bond 
valence. For many structures their effects are either 
identical or very similar, and it is necessary to find 
examples, such as KVO3, for which they differ mark- 
edly. It appears from the KVO3 results that (9) places 
too much emphasis on equalizing valences at vertices 
of low degree (here V), at the expense of higher- 
degree vertices in the same class (here K). In the 
same way, for example, Brown predicts for K2S5016 
(De Vreis & Mijlhoff, 1969), variations which are too 
small for S, and too large for K. Equation (6) also 
seems somewhat unsatisfactory, but in the opposite 
sense. 

This suggests it may be possible to improve the 
agreement of the network method by formulating the 
'voltage law' as 

C 'U-Is  = 0 

analogous to combining (2) and (3) for the electrical 
network, where U, like the resistance, is an empirical 
property of the edges, possibly of the form ! + AW 
or W ~. 

I wish to thank Professor I. D. Brown for suggest- 
ing the problem, and for helpful comments. 

A P P E N D I X  

The approach adopted to finding an inverse to the 
rectangular matrix is an alternative to the much 
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more general Moore-Penrose method, and is specific 
to the particular problem discussed here. This is 
because it relies on certain properties of a tree graph, 
as can be seen from what follows. 

Br  is a matrix in which each column contains one 
element of value 1, one - 1 ,  and the rest zero. The 
corresponding row of its inverse has only values _ ~, 
the sign depending on whether that vertex lies in the 
same component of the graph as the positive or 
negative end of the corresponding edge used as cut. 
Table 1 gives the K 2"3 case. For programming pur- 
poses the components are best determined from a 
matrix of distances within the spanning tree T, for 
then each vertex takes the sign of the nearer end of 
the edge which is cut. The distance matrix is con- 
structed by first forming the adjacency matrix of the 
tree, At, using Ar  = B B / -  V where V is a diagonal 
matrix of the vertex degrees. 

Then the zero elements A r;k are found for which 
A ro. and A rjk are both non-zero, and are filled in with 
the distance of the path tjk, namely A ro.+ A rjk. 
Repetition of this procedure will find all distances up 

to and including 2, 4, 8 ... and so on, until the 
distance matrix is complete. 

It is now possible to determine each element of 
B£ ~ by comparing two elements of this distance 
matrix, which we may call P. However, the program- 
ming may be made even simpler by noting 

BT= i t  ~___ - -  ~PBr. 
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Abstract 

The crystal structures of two natural crystals of 
staurolite, from Heas, the Pyrenees (H), and Scaer, 
Brittany (S), France, have been refined from X-ray 
Mo Ka data at 293 K. Monoclinic, C2/m, Z =  1. 
(H): Fe3.59Ti0.o9Mno.ol Zno.ol Mgo.83All 7.9oSi7.5oO45- 
(OH)3, Mr = 1690.8, Dx = 3.79 g c m  - 3, # = 

28.01cm -l ,  a=7 .8700(9 ) ,  b=16.6228(18) ,  c = 
5"6613 (4) A, /3 = 90-124 (5) °, V=  740.6 (2) A 3, R(F) 
=0-018 for 2494 unique reflections. (S): Fe3.38- 
Tio.llMn0.o6Zn0.a7Mgo.75Al17.81Si7.66Oas(OH)3, Mr = 
1684.9, D x = 3 " 7 7 7 g c m  -~, # = 2 7 . 5 2 c m - I ,  a =  
7.8713 (2), b = 16-6235 (7), c = 5-6608 (2) A, /3 = 
90.016 (2) °, V=  740.71 (8) A 3, R(F) = 0.026 for 2997 
unique reflections. It is demonstrated that the crystal 
structure of staurolite can be derived from that of 
spinel through crystallographic shear. The geometric 
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differences between the (H) and (S) varieties and 
previously studied staurolites are confined to the 
partially occupied cation sites. The disorder in the 
tetrahedral Fe site can be effectively modelled using 
third- and fourth-order coefficients of a Gram-  
Charlier expansion of the Fe temperature factor or 
by a threefold-split Fe(A/B/C) site. Model calcula- 
tions demonstrated that neither the difference elec- 
tron density (Ap) peak separation, nor the Ap peak 
heights, are directly interpretable, while the increase 
in temperature-factor coefficients owing to disorder 
is reliably related to the site splitting. The separation 
between the Fe(A/B/C) positions is estimated to be 
0.25A. The large variation between previously 
reported Fe-site Ap peak separations can be related 
to different experimental resolutions. The present 
study suggests that the Fe-site splitting is in the range 
0.20-0.25 A for all staurolites. 
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